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The motions of mechanical systems depend upon the forces action and the con- 
straints imposed, thanks to which it is possible to control the system’s motion 
both with the aid of forces (dynamic control) as well as with the aid of con- 
straints (kinematic control). Holonomic and linear nonholonomic constraints, 
depending upon certain variable parameters, apparently were first examined 
in a series of papers by Grdina on the dynamics of living organisms (for brevity 
we specify only the papers [l, 23 from this series, in which the remaining papers 
are mentioned). Having taken conditions on the virtual displacements as the 
parametric constraints and having adopted an axiom for the determination of 
the ideal constraints analogous to those for the usual constraints, Grdina con- 
structed, on the basis of the d’Alembert-Lagrange principle, the foundations of 
the analytical dynamics of systems with parametric constraints. In particular, 
for systems with parametric constraints he showed the validity of all the funda.- 
mental types of equations of motion of systems with ordinary constraints and 
showed that these equations can be derived from the Gauss principle. Many 
years later a number of these results, with certain extensions, were published 
by Kirgetov [3, 4) who was apparently unaware of Grdina’s papers, Together 
with this a modified Gauss principle was given in [3] for systems with holono- 
mic parametric constraints, equivalent to the latter under the usual constraints, 
and the statement that “the Gauss principle is lacking in the case of systems 
with parametric constraints” was retained, contradicting the results in Cl]. 

In the present paper we carry on the investigation of the motion of controlled 
systems. For parametric holonomic and nonlinear nonholonomic constraints we 
extend the definition, proposed in [5] for ordinary constraints, of virtual displa- 
cements, leading in a natural way to Chetaev’s conditions [S]. From the d’Alem- 
bert-Lagrange principle we derive other fundamental variational differential 
principles of the dynamics of the controlled systems, namely, the Jourdin prin- 
ciple, the Mach inequalities and the generalized Gauss principle, the Chetaev 
principle. We have shown that for the controlled system all these differential 
principles are applicable and equivalent, as in the case of uncontrolled systems 
[5]. From the equations of motion it follows that in the final analysis a kine- 
matic control reduces to a dynamic control. In the conclusion we discuss the 
properties and peculiarities of Be’guin’s [7] analytic interpretation of system 
with servo-constraints ; we also discuss the difference between the ordinary and 
the parametric constraints and servo-constraints. 
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1, We consider a system of material points with masses m, (y = 1, . . . , Iv), 
subjected to certain constraints and moving relative to an inertial coordinate system 

under the action of forces applied to it. The Cartesian coordinates of the system’s, points 
and the projections of the given forces onto the coordinate axes are denoted by Xi and 

Xi (i = 1, . . .) n = 3N), so that the coordinates of the Y -th point, its mass and the 
coordinate axes projections of the active forces on it are zsv_a, 5sv_rr %svr 17~s~-~ = 

m3v-1 = m3v, X3"-2, X3"-l, X3" , respectively. The total time derivatives are de- 
noted by an upper right dot (z’ s dx / dt). The specified forces Xi are taken to be 

known functions of coordinates xj. of the velocities Xj’ (1 :-- 1, . . . , n), of time t 

and, perhaps, of certain variable parameters U, (I. = 1, . . . , A). 
Let the system be subject to the geometric constraints 

fs (-Tr, . . ., x,1, Ul, e . ., U,+, t) = 0 (S=f ,..., WLlj (1.1) 

and to the kinematic nonintegrable constraints 

‘pp (x,, . . . , x,, xl*, . . . , &‘, u1, . . . , Uk, t) =- 0 (p = 1, . . ., m,) (l. 2, 

nonlinear, in the general case, relative to the velocities 5i’, where the number of con- 

straints m = m, $- m2 < n. Generally the constraint equations (1.1) and (1.2) are 
assumed dependent on the parameters u ,.: which does not exclude, it is understood, the 
presence among them of ordinary constraints not depending upon parameters u,. Con- 

straints (1.1) and linear constraints (1.2), depending on variable parameters, were appa- 
rently first examined by Grdina [l, 21 who called them volitional constraints and voli- 
tional parameters, respectively. Later on‘Kirgetov [3, 41 calIed them parametric con- 

straints and he called the parameters u,. the control parameters. Here we adopt the later 

designations. 
We shall assume that the variable parameters u,.: not defined beforehand, can be given, 

during the motion, arbitrary values from a specified control region U and, by the same 

token, can control the system’s motion by a suitably specified or chosen control law for the 

the system [3]. In what follows we limit the analysis to only those variable parameters 

u,. E U, which possess the first u,’ and, possibly, the second u,*’ total time derivatives, 

where for simplicity we assume that the values of the derivatives also belong to thespe- 
cified control region U, i. e. 

U, E u, u; F u, u,” E u (r = 1, . . ., k) 

Thus, we shall examine the general case when both the given forces (dynamic control) 
as well as the constraints (kinematic control) depend upon the control parameters. 

The functions Xi (z, z’, U, t) and ‘pp (x, z’, u, t) are assumed to belong to func- 
tion class C,, while the functions fS (x, u, 1) , to class C,. The constraints (1.1) and 
(1.2) are reckoned to be compatibb and independent for any values of u, E 11. This 
implies that the functional determinants of functions f, in the variables xi and of the 
functions ‘pp in the variables xi’ have the ranks m, and m2, respectively, for any u, E 
U. In addition, we assume the constraints to be independent of the given forces Xi act- 
ing on the system. Parametric constraints are a generalization of the ordinary nonsta- 
tionary constraints and reduce to the latter when instead of the control parameters we 
substitute into Eqs. (1. 1) and (1.2) the relations 

lly = Ur (Xl ?. . ., xn, z1’ ,. . ., r,‘, t) (r = 1 ). . .) k) (1.3) 
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by which the system control law can be given in the general case [3] ; in particular, 
they can be specified as ur = ur (t). 

The parametric constraints (1. l), as also the usual geometric constraints, restrict the 
spatial positions of the system’s points. Every position of the system for which the cooc- 
dinates of its points satisfy Eqs. (1.1) is called a virtual position for the given instant t 
and for the given values of parameters U, E U. In addition, constraints (1. l), as well 

as constraints (1.2), impose specific restrictions both on the velocities xi’ as well as on 
the accelerations Xi” of the system’s points. As a matter of fact, the equations of bila- 

teral constraints (1.1) must be satisfied at any instant ; therefore, the total time deciva- 

tives on the left-hand sides of Eqs. (1.1) must equal zero 

df, afs -= 
dt z xi' + 

at, at, 
1 c ;i;;-u” +x =o 

i P r 
(1.4) 

(s = 1, . . .) m,) 

Relations (1.4) constrain the velocity components with respect to the gradients grad JS 

of the finite constraints ; then; as also (1.2), depend not only on the values of t, xi, xi’, 
but also of u, and u,‘,if there ace parametric constraints among the constraints (1.1). 

Every collection of velocities xi*, satisfying conditions (1.2) and (1.4) for a given 
system position Xi, virtual for the instant t being considered and for the values of paca- 
meters U, E U, and for the given values of u,’ E U, is called a system of kinema- 

tically virtual velocities. In exactly the same way, by differentiating Eqs. (1.4) and 

(1.2) with respect to t , we obtain the conditions 

@t, -= 
dtz 

+ (I. 5) 

(p=l,...,mz) 

for the accelerations xi” of the system’s points. These conditions depend not only on 

the values of t, xi, zi’, ur, but also of u,’ and of u,.” if there are parametric con- 
straints among constraints (1.1). 

Every collection of accelerations Xi’*, satisfying conditions (1.5) for given positions 
xi and velocities Xi* of the system points, virtual for the instant t being considered and 
for the values of &, u,.’ E u, and for the given values of ur” E u is called a sys- 

tem of kinematically virtual accelerations. Infinitely small displacements 

AX~= Xi (t + dt)-Xi (t)= xi’dt + ‘/*Xi” (dt)2+ . . . (i=1,. . ., n) 

which the system’s points can accomplish in infinitesimal time intervals dt from a 
given position xi (t), corresponding to some system of kinematically virtual velocities 
xi’ and accelerations Xi” for the instant t being considered and for the values of u,, 
U’ r 7 Ur ” E U are called the kinematically virtual displacements of the system. 

Suppose that at a given instant t the system takes some virtual position defined by 
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the coordinates z+ (t) of its points. Let us consider any two kinematically virtual dis- 
placements Asi and Ax’ i of the system’s points, accomplished in one and the same 
infinitesimal interval dt from one and the same given position and corresponding to 
two systems of virtual velocities xi’ and xi” and accelerations tl” and xi’** for given 
t, ur, UI’, Ut.‘, and let us consider their difference 

AXt’- Axi = k’dt + ‘/,Axi” (dt)a + . . . 
(Axi’ = x;’ - xi*, A&’ = x’i** _ xi**) 

(i = 1,. . ., n) (1.6) 

The collection of principal parts (of one and the same order of smallness relative to dt 
for all i) of these differences is called, as in the case of ordinary constraints [5], the 
virtual displacement of the system and is denoted 6xr (i = 1, . . . , n). When not all 
Axi’ = 0 (i = 1, e e .y n), the virtual displacements of the system’s points are deter- 
mined by the formulas 

6x1 = Axi’dt (i = 1,. . ., n) (1.7) 

If, however, all Axi’ = 0 (i = 1, . . . , n), then the virtual displacements are 

6~ = ‘/sAxi” (dt)a (i = I, . . ., n) (1.8) 

Thus, the system’s virtual displacemenis are elementary displacements of the points, 
admissible under the constraints at a given instant t and satisfying the conditions 

(1.9) 

(s = 1, * - *, m,; p = 1, . . ., m,) 

Under the above-mentioned assumption on the independence of constraints (1.1) and 
(1.2) Eqs. (1. S), obviously, are independent. 

Constraints (1.1) and (1.2) are taken to be ideal, i. e. such that their reactions Ri to 
every virtual displacement (1.9) of the system equal zero 

z 
Ribi = 0 (1.10) 

i 
A consequence of the axiom (1.10) defining ideal constraints is, as in the case of the 
usual constraints, the fundamental principle of the dynamics of controlled systems, 
namely, the dIAlember&Lagrange principle [l, 31 

c (rn<Wi - Xi) 6X+ = 0 (1.11) 
i 

being a variational differential principle valid for the true motion of the system with 
accelerations zl” = wi for any infinitesimal virtual displacements 6xi from a given 
configuration of the system in its true motion. The equations of motion of controlled 
systems, in the form of equations with multipliers, of the equations of Lagrange, Hamil- 
ton, Jacobi and Appel, were derived in [l - 43 from relations (1.11). 

2, Let us show that the fundamental variational differential principles of dynamics, 
equivalent to the d’ Alembert-,Lagrange principle, are valid for controlled systems. 

1’. The Jourdin principle. For given instants t and values of u,., u,.’ fZZ U 
we take as given the system’s configuration xi and its true motion with velocities xi’= 
Z% and we consider some kinematically virtual motion with the same values of xi and 
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with infinitely close velocities zi’ = ui + 6x.i. From Eqs. (1.9), with due regard to 
(1.7), it follows that the quantities 6xi’ satisfy the conditions [5] 

c 2 6Xi' = 09 
i 

CaT Qp &q’ = 0 (s --_ I, . . . , ml, p = 1, . . . 9 ma) 
(2-l) 

i i 
1 

Since conditions (2.1) for 6ti’ coincide with conditions (>. 9) for 6x1, we can write 
Eq. (1.1) as 

z 
(miWi - Xi) 6Xi’ = 0 (2.2) 

i 
Equation (2.2) expresses the variational differential Jourdin principle, namely, Eq, (2.2) 
is valid for any 6Xi’ satisfying conditions (2.1) for a true motion in the class of motions 
conceivable in the sense of Jourdin (kinematically virtual motions satisfying the condi- 
tions imposed on the system by the constraints and the conditions of the constancy ofthe 
Xi for given instants t and values of ut, u,’ E U) . 

Example 2. 1. From relations (2.2) and (2.1) we can derive the equations of 
motion of the system in various forms ; for instance, as equations with multipliers [l] 

miwi= Xi+ z h “-+&pg? s axi (i = I,. . . ( n) 
8 P 

(2.3) 

to which we have to add on the constraint Eqs. (1.1) and (1.2). Here ha and up are un- 
determined Lagrange multipliers. The system of Eqs. (2.3), (1.1) and (1.2) for zi, hs 
and up is not closed since besides the n + ml + ma unknowns it also contains the con- 
trol parameters z+. To close the system we need to specify [3] or, from some additional 
conditions, determine the control law (1.3). As we see from Eqs. (2.3) the constraints 
(1.1) and (1.2) force their own reactions on the system, depending, in the general case, 
on the control parameters, so that in the final analysis the kinematic control reduces to 
a dynamic control, to control by forces. The undetermined multipliers can be eliminated 
from (2.3) if by these equations we replace xi” in Eqs. (1.5) and solve the system of 
inhomogeneous equations with a nonzero determinant thus obtained relative to ho and 
PP. As a result we find the latter in the form of certain functions of the variables !, xir 
Xi.9 ur, ur’, z+“and, substituting into (2.3), obtain the system of equations 

miXi ** = Qi (x, x’, u, u’, u”, t) (i = 1 ,. . ., 4 (2.4) 

whose right-hand sides depend, in the general case, not only on UT but also on ur’ and 

ut ‘*. In special cases, when there are no parametric ones among the geometric con- 
straints (1.1). the right-hand sides of Eqs. (2.4) are independent of uy”, while if there 
are no parametric ones among the nonintegrable constraints (1.2), they will be indepen- 
dent of ut’ These same properties are passeJJed by the equations of motion in general- 
ized coordinates [l, 23 and in quasi-coordinates [4] which are more convenient than 
equations in Cartesian coordinates in applications with a large number of variables. 

owing to the dependence of the equations of motion not only on ur, as for dynamic 
control, but also on ur’ and ur”, the kinematic control is somewhat more complicated 
than dynamic control, but at the same time permits greater possibilities for control. 
Obviously, general control theory [8] is applicable to kinematically controlled systems 
too, If we multiply Eqs. (2,3) by the real variables dxi = vidt and mm over all i, we 
obtain the equation 
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(2.5) 

expressing a theorem on the system’s kinetic energy. When the active forces are 
independent of time, of the parameters uI. and of the potential forces, Eq. (2.5) 

Xi dxi = dU (x1, . . , x,,,) 

> 

(2.6) 

The reactions of the parametric forces on the real variables is not zero, in general; 
therefore, the total mechanical energy T-Uof the system does not remain constant. 

As in the case of servo-constraints [7] tie reactions, depending upon their sign, lead 

to an increase or a decrease of the system energy and, in particular, can damp the 
oscillations of a system in which energy dissipation is lacking. 

2’. The Mach inequalities and the generalized Gauss principle. 
At an instant t and for given values of parameters u,,and of their velocities Us 
and accelerations &“from domain U we assume as given the system’s state ICY and 

xi’ = U&n some real motion of it with accelerationswi = dxi’jdt and we consider 

some kinematically virtual motion with the same zi and Xi’ and with infinitely close 
accelerations 6Xi’ / dt =Wi $ 6Xi’ With due regard to (1.8), from Eqs. (1.9) we ob- 

tain the conditions [5] 
(2.7) ./ 

c afs ay6Xi” = 0, 
* c “,“; 6Xi”==0, 72 (s-=1,.... ml, p = 1,. . ,m2) 

i i 
* 

for 6Xi”. Comparing (2. ‘7) with Eqs. (1. 9) we see that a difference of accelerations 
is found among the virtual displacements of the system. Consequently, in this case 

Eq. (1.11) can be written as 

z 
(KliWi - Xi) 6Xi” = 0 

i 

At instant t we free the system of a part of the constraints imposed on it and by 

aXi* I dt I we denote the accelerations of the system’s points in a real free motion 
under the action of those same forces xi* Since among the virtual disflacements of 
the free system we can find the virtual displacements of a system with constraints, 
an equation of form (1.11) for the former can be written as 

F( axi* 
mi yg - xi 

> 
6Xi” = 0 

Subtracting this relation from the one preceding, we obtain the equality [S] 
Ads + A da - Asa = 0 (2.8) 

where the measure of deviation of the real (d) motion from the conceivable (6) one is 
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The quantities Ada and Asa are determined analogously. The Mach inequalities 
for a controlled system follow from equality (2.8), 

Ads < Aos, Ada < Aas (2.9) 

The second one of these inequalities is an expression of the generalized Gauss princige, 
namely, the measure of the deviation of the real (d)motion of a system from the 

real (a) motion of the system freed of a part of the constraints is less than ihe measure 
of the deviation of the latter from the conceivable (6) motion of the system. ‘If the 
system is freed of all constraints, the second inequality in (2. 9) reduces to the Gauss 

principle for controlled systems; for the real motion of a system the constraint 

has a minimum in the class oi Gauss-conceivable accelerations satisfying Eqs. (1.5) 
with given values of t, zi, ICE’, uT, u,.*, u,‘*. 

Note 2.1. The derivation we have presented of the Gauss principle from the 
d’Alembert -Lagrange principle attests to the equivalence of these princi#es for con- 

trolled systms. It also corroborates the indirect proof [l] of the validity of the Gauss 

principle for systems with parametric constraints and refutes the assertion [3] on the 

absence of this principle for such systems. Such an assertion was made in [S] on the 

basis of an analysis of the equations for kinematically virtual motions, obtained by 

substituting control law (1.3) into Eqs. (1. l), whereas the virtual displacements were 

determined by the first group of Eqs, (1. 9). Such an approach, however, is incon- 

sistent since if we can really determine the kinematically virtual motions with due 

regard to the control law, then with due regard to the latter we should be able to de- 

termine the virtual displacements too; in this connection, obviously, the prametric 

constraints become ordinary constraints. We see as well that the modification of the 

Gauss principle(replacing in (2.10) the total accelerations of the mints by their com- 

ponents tangential to the constraints, proposed in [3], is equivalent to the Gauss 
principle not only for ordinary holonomic constraints [3] but also for parametric con- 

straints (1.1) and (1.2). 

3”. Chetaev’s principle. If we repeat the arguments in [9], we can easily 

see that the modification of the Gauss principle, given by Chetaev, is also valid for 

systems with parametric constraints, namely, the operation on an elementary cycle 

consisting of the direct Gauss-conceivable motion in the effective force field and of 

the motion retrograde (inverse) in the force field which would be sufficient for the 

creation of the real motion if the controlled mechanical system were perfectly free, 
has a maximum for the real motion. 

As follows from what we presented in Sect. 2 the differential principles of Jourdin, 

Gauss and Chetaev are equivalent to the d’Alembert-Lagrange pincipe and are ap 
plicable for controlled systems with parametric constraints (1.1) and (1.2). The 
dynamics of controlled systems can be founded on each of these principles. 
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3. In conclusion we discuss briefly the properties of a class of controlled systems, 
namely, systems with servo-constraints, whose general theory was developed by 

Beguin [‘I] (also see the almost verbatim reproduction of this theory in Ref. [lo] ), 

and also systems with so -called conditional constraints [ll], and we compare the 

reactions of servo-constraints with the reactions of ordinary and parametric constraints. 

The usual constraints analyzed in mechanics express the conditions for the contacts 

between bodies both occurring as well as not occurring in the system, where the latter 

either are immovable or are in a motion preassigned in time. The reaction forces of 

such constraints are, obviously, contact action forces which, according to a well- 

known classification, relate to the category of passive forces in contrast to the category 

of given or active forces applied to the system, on which the reaction forces depend. 

Parametric constraints also express contact conditions, but in contrast to the ordi- 

nary constraints their reactions are not purely passive forces since they depend not 

only on the active forces xi, but, in general, also on the control parameters occur- 
ring in Eqs. (1.1) and (1.2), which have a possible active effect on the system’s 
motion. 

We begin with axiom (1.10) for the reactions of ideal constraints, ordinary and 
parametric ones. Beguin [7] noted that mechanisms exist which realize constraints 

by a method entirely different from the one indicated, for which it is impossible to 

digress from the method of realizing constraints. The realization of constraints by 

them is ensured not with the aid of a simple contact i. e. , not passively, but with the 

use of auxiliary energy sources which automatically go into action and are automatic- 

ally controlled so that the given constraint is realized continuously. B&guin called 

such constraints servo-constraints or constraints of the second kind, in distinction to 

ordinary constraints or constraints of the first kind, this designation also ap#ied to 

parametric constraints. 

The reaction forces cD~ of the servo-constraints, applied to the system’s points, 

can be forces acting at a distance (for example, electro-magnetic or other forces), 
internal stresses yielding a contraction or an expansion of the bodies (compessed air, 

muscles of a living being, etc.), contact forces of foreign bodies whose position de- 
pends upon a number of coordinates of the system and whose motion is automatically 
controlled so as to realize the given constraint; the contact forces depend both on the 

contact constraints as well as on the servo-constraints. Just as the reactions Ri 

of constraints of the first kind, the reactions 8, of the servo-constraints are not known 
in advance; only the values they must take in order to realize the given servo- 

constraint are known. However, the forces mi are caused, as we have already noted, 
by the presence of additional energy saclrces and in this sense belong to the category 
of active forces; the servo-constraints depend upon the action of such forces. 

In contrast to axiom (1.10) the reactions of ideal constraints of the first kind are 
the sum of the elementary reactions.of servo-constraints on the virtual displacements 
and, in general, are nonzero; a consequence of this is that the d’hlembert-Lagrange 
principle for systems with servo-constraints can be written as 

c 
(T&Wi - Xi - CDi) 6Xi = 0 (3.1) 

in contrast to the form (1.11) of this principle for systems with ideal constraints of the 
first kind. This is what causes the analytic distinction of systems with servo- 
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contraints from systems with ordinary or parametric constraints. By assuming that 

among the virtual displacements of the system, admissible under constraints of the 

first kind. there are displacement of the form 

c 
a,&Q=O (X==j,...jj) 

(3.2) 

for which the reactions of the servo-constraints equal zero by virtue of the very way in 
which they act, E3&uin writes the d~Alembert-Lagrange principe for such displace- 

ments in the usual form (1.11) and derives the equations of motion of systems with servo 
constraints, to which it is necessary to add on the equations of the servo-constraints, 

The problem turns out to be well-defined if the number of restrictive conditions (3.2) 
equals the number of servo-constraints, The equations of motion of a system with 
servo-constraints can take the form of the Lagrange or the Appel equations [7]. It is 

remarkable that when the reactions of the servo-constraints consist exclusively of the 

reactions of moving bodies whose positions depend upon a certain number of the 

system’s coordinates, equal to the number of servo-constraints, the problem’s solution 
is independent of the inertia of these bodies and of the forces applied to them. In ex- 

actly the same way, if in the system we can separate two parts Z and C,, such that 

no servo-constraint reactions besides the reactions of system &, act on system I: 

and the number of coordinates on which the latter depend equals the number of servo- 
constraints, then the inertia of system 8, and the forces applied to it do not affect the 
motion of system x . In similar cases we restrict ourselves to compiling the equa- 

tions of motion of only the system X if we are not interested in the servo-constraint 
reactions. 

We note that from the d’Alembert-Lagrange principle for virtual displacements 
satisfying conditions (3.2) for systems with servo-constraints we can derive [12] the 

Mach inequalities and the generalized Gauss principle without the servo-constraint 
reactions occurring explicitly in it. 

The following problem fll] is close to the problem of the motion of systems with 

~rvo-~ons~ain~. Suppose that we are iven a number of relations 
CD, (X1, . . ., x,, .?Al, . . .) Uk, t F = 0 (6 = 1, . . ., f2) 

@h+, (II, . . . , xn, xi’, . . . , In’, &, . . . , Uk, t) = 0 (n = f, . . . . ,$‘) (3’ 3’ 
and that an exact satisfaction of these relations during the motion is required by using 

an appropriate control of the system. Relations (3.3) are called Dl] conditional con- 
straints; their reactions must be identically equal to zero. Two stages are recommend- 

ed in [ll] for solving this problem: 1) set up the equations of motion of the system with 
due regard to all its constraints, both the actual (1.1) and (1.2) as well as the con- 

ditional (3.3), treating the latter as actual: 2) free the system of the conditional 

constraints by complementing the collection of its generalized coordinates and quasi- 
coordinates by the necessary number of new coordinates and quasi-coordinates and set 

up the equations of motion of the freed system, corresponding to the new coordinates 
and qu~i-coordinates, in which the equations of the conditional constraints are then 
formally accounted for. The equations in the first group thus obtained are called the 

equations of motion of the system with conditional constraints, while in the second 
group the dynamic conditions for the fulfillment of the conditional constraints, ” taking 

into account that, in the final analysis, these are conditions on the forces in order that 
the conditional constraints be satisfied” (see [ll] ). 

Note 3.1. Such a terminology is not fully successful since by exampe we have 
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shown below that the result can prove to be contradictory; the equations in the second 
group yield the equations of motion, while in the first group conditions on the controls. 

Actually, it is advisable to restrict ourselves to one stage namely, set up the equations 

of motion of the system with due regard only to constraints (1.1) and (1.2) and then to 

account for Eqs. (3.3) in the resulting equations, thus obtaining both the equations of 
motion as well as the conditions on the controls. 

In [ll] the conditional constraints were identified with B’eguin’s servo-constraints 

since one or the other “are realized as if compulsorily by means of a suitable control 
of the system” . Although the latter is true, nevertheless, there is a subtle difference 
between servo-constraints and conditional constraints in their analytic treatment., In 

[7] servo-constraints are interpreted as precisely the constraints whose reactions cDi 

are unknown in advance, but by virtue of the very method of realizing them the dis- 

placements (3.2) on which the servo-constraints do not react are known. Thanks to 
this, Beguin succeeded in obtaining the equations of motion of a system with servo- 
constraints without the servo-constraint reactions @‘i explicitly occurring in them, as 

well as in the case of ideal constraints of the first kind. In Kirgetov’s interpretation, 

proceeding from d’Alembert-Lagrange principle in its usual form (1. ll), it is assumed 
that ” the satisfaction of the conditional constraints is achieved exclusively at the ex- 

pense of external active forces acting on the system and of the reactions of real para- 
metric constraints” (see [ll]). In other words, it is assumed that the expressions for 
forces @‘i are known, referred not to the number of reactions but to the number of 

external active forces Xi with whose aid relations (3.3) are realized, thanks to which 
relation (3.1) can be written in the form (1.11). When the expession for forces ai 

applicable to the system for realizing the servo-constraints are not know beforehand, 

these forces can be set among the given forces Xi only purely formally, with a sub- 

sequent compulsory determination of their expressions from the equations obtained from 

the d’Alembert-Lagrange principle in the form (1.11). 

Note 3.2. In essence both the servo-constraints as well as the conditional con- 

straints are invariant relations of the equations of motion of the controlled systems, 
first determined by Poincark [13] for autonomous systems of differential equations not 

containing control parameters. Obviously, for controlled systems there is a greater 

possibility for the existence of invariant relations thanks. to the possibility of making a 
suitable choice of the control parameters. The distinction between servo-constraints 

and conditional constraints in this connection is the fact that the first are realized by 
forces ~1)~ additional to the given active forces Xi , while the second, by only the 
given active forces Xi and the parametric constraints. However, we should bear in 
mind the possibility of the existance of invariant relations for an uncontrolled system. 

Example 3.1. Let us illustrate what we have presented above by analyzing the 
solution of Be’guin’s problem on the planar motion of a plate hinged to a circular disk 
(we retain all the notation of [7] ). Relying on the theory he developed Biguin aEpies 
the Lagrange equation relative to the plate separately, and obtains the following equa- 
tion of its motion: 

M (b’ -.! k2) B” _ MHbB.2 -, /Co sir, B = (J (3.4) 

noting that if theconstraint cf - B x / 2 were realized directly by the contact of 
tile plate and the disk, then the system’s motion would be determined by the equation 

[M (/I” (‘2 k”) ~,~ II] p” -. 1: (0 sitr B + H Cos p) U (3.5) 
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By examining Biguin’s problem from the point ofview developed in [ll], of inter- 
preting servo-constraints as conditional constraints, Kirgetov concluded that Biguin 
“was not correct in the given case” and stated that the equation of motion is 

[M (Rz + b2 + k2) + II] /3” + F (u sin fi i- R cos j3) = u (3.6) 

which differs from Eq. (3.5) only in the right-hand side, while Eq. (3.4) “is a dy- 
namic condition for the fulfillment of the conditional constraint imposed on the system’ , 
Actually, however, Bkguin is correct. As a matter of fact, Eq. (3.4) cannot serve as 
the dynamic condition for the fulfillment of the conditional constraint since it does not 
contain the control u . Equation (3.6) would be the system’s equation of motion if 
its right-hand side were a given function. However, it is evident that the conditional 

constraint being examined cannot be realized for every given moment u . In fact, 

Eq. (3.6) can serve for determining an expression for moment u , which is easily ob- 
tained by substituting the conditional constraint into Eq. (3. 6) and allowing for the Eq. 

(3.4) of motion of the plate. 
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